In vivo butyrylcholinesterase activity is not increased in Alzheimer's disease synapses.
نویسندگان
چکیده
OBJECTIVE We tested the premise that cholinesterase inhibitor therapy should target butyrylcholinesterase (BuChE) in Alzheimer's disease (AD), not acetylcholinesterase (AChE) alone, because both enzymes hydrolyze acetylcholine, and BuChE is increased in AD cerebral cortex. METHODS To examine this issue in vivo, we quantified human cerebral cortical BuChE activity using tracer kinetic estimates (k(3)) of 1-[(11)C]methyl-4-piperidinyl n-butyrate ([(11)C]BMP) hydrolysis determined by positron emission tomography. Validation of the putative positron emission tomography method included regional distribution, positive correlation with age, and attenuation by the nonselective cholinesterase inhibitor physostigmine, but no attenuation by the AChE-selective inhibitor donepezil. Positron emission tomography scans in AD patients (n = 15) and control subjects (n = 12) measured both BuChE (using [(11)C]BMP) and AChE activity (using N-[(11)C] methylpiperidin-4-yl propionate, an established method). RESULTS As expected, AChE activity in AD cerebral cortex was decreased to 75 +/- 13% of normal (p = 0.00001). Contrary to prediction, accompanying BuChE activity also was decreased to 82 +/- 14% of normal (p = 0.001). INTERPRETATION Failure to observe increased [(11)C]BMP hydrolysis in vivo makes it less likely that incremental BuChE contributes importantly to acetylcholine hydrolysis in AD. The findings do not support the premise that inhibitor therapy should target BuChE so as to prevent increased levels of BuChE from hydrolyzing acetylcholine in AD cerebral cortex.
منابع مشابه
P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease
Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms. Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...
متن کاملEffect of Gallic Acid on Reactivation of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Diazinon in Vitro and in Vivo
Background and purpose: Diazinon is an organophosphate insecticide that binds to the acetylcholinesterase enzyme after metabolization causing its inactivation. Galic acid is a polyphenolic compound with nucleophilic properties. The aim of this study was to investigate the effects of gallic acid on reactivation of acetylcholine and butyrylcholinesterase inhibited by diazinon in mice and human se...
متن کاملRadiolabeled cholinesterase substrates: in vitro methods for determining structure-activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity.
There is currently great interest in developing radiolabeled substrates for acetylcholinesterase and butyrylcholinesterase that would be useful in the in vivo imaging of patients with Alzheimer's disease. Using a simple in vitro spectrophotometric assay for determination of enzymatic cleavage rates, the structure-activity relationship for a short series of 1-methyl-4-piperidinyl esters was inve...
متن کاملAcetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer's Fibrils: Possible Role of the Peripheral Site of the Enzyme
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was i...
متن کاملTargeting butyrylcholinesterase for preclinical single photon emission computed tomography (SPECT) imaging of Alzheimer's disease
INTRODUCTION Diagnosis of Alzheimer's disease (AD) in vivo, by molecular imaging of amyloid or tau, is constrained because similar changes can be found in brains of cognitively normal individuals. Butyrylcholinesterase (BChE), which becomes associated with these structures in AD, could elevate the accuracy of AD diagnosis by focusing on BChE pathology in the cerebral cortex, a region of scant B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of neurology
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2006